- no circular wait
- no held & wait
- no饥饿
- no preemption

Choose one

Decisions
Let A be in (x, y) (reverse)

Get A next z

No head & neck

easy not
No circular wait

⇒ yes, hold & wait is OK

but no circular

\[P(\overline{r_2}) \rightarrow P(\overline{r_1}) \]

\[P(\overline{r_1}) \rightarrow P(\overline{r_2}) \]
Some text about...

R \Rightarrow Y \Rightarrow zY

\text{unsuccessful}

1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots

\text{also unsuccessful}

Directed versus actual

\text{unsuccessful addition}
Much to keep or vice versa.

one

Choose

\[\text{for } i \neq j \]

A process of what has to be.
sincerely

Getting into depression

Happen- & by not

Advices - do not let decisions
Bankers App.

- Bank has customers
- Customers have credit limit
- Customer gets loans in small amounts from bank, but does not repay
- Repay only when limit is reached
I so a 70 \rightarrow 10 \rightarrow 30 \text{ with}

\begin{align*}
\delta & \rightarrow \delta 20 \rightarrow 10 \\
\delta & \rightarrow \text{wet}
\end{align*}

4 \rightarrow \delta 10 \rightarrow 20 \rightarrow 30 \rightarrow \text{down}
Set up variables:

$\text{Avail} \rightarrow \text{total in bank left}$

$max[N] \rightarrow \text{credit limit per customer}$

$\text{Alloc}[N] \rightarrow \text{amount loaned}$

$\text{Need}[N] = max - \text{Alloc}$
The unsafe case of $\text{safe} \land \text{find }(f) \neq \text{true} \implies \text{work} = \text{add}
\text{new } [i] \to \text{work}
\text{find } i \text{ such that } \text{func} [i] = f
\text{fun} = \text{false } [N]
\text{temp } \text{work} = \text{old} \text{ work} \land \text{func}
\text{safe } \text{find } i
\text{func } f$
\[A_{\text{free}} + \text{fuel} - x \]

- Safe
- Safe
- Safe
- Safe
- Check safe

\[\text{work} = \text{Amax} - x \]

\[x \text{ must be } \geq \text{Amax} \]
to listen out of order

Let note something new

What can be done

Let alone fix earlier

... set aside to later

When some customers

...
How? Where?

Let them destroy
Deadlock detection
Let let destroy loop

Then necessary
how?
\[C = 0 \text{ cm} \]

1. At node marked \(a \) all nodes connected to it are fixed.
2. At node marked \(b \) a free body diagram of each step is drawn and forces are applied at each node (considered)
When a new entry is created, 3 ready③
2 ready ②
1 offer ①
When to do described below.
If f is linear

$f(x) = f(1) + (x-1)f'(1)$

where $f(c) \to y(c) \to A(c)$

and $f(c) \to y(c) \to z(c)$.
Decide whether the following statement is true or false.

A: True
B: False
\[\frac{n}{k} \]

\[\frac{\text{vertex-adjacency sum}}{k} \]

\[\text{degree} \]

\[\text{new edge} \rightarrow \text{deleted} \]
= \text{ process with least resources } \Rightarrow \\
\text{ Victim } \Rightarrow \\
\text{ Victim P+R}
1. Terminate
2. Receive or poll
3. Read our updates
4. Restart
5. Recovery