In the rest of this lecture, if \(y \) is to compute

\[
\text{then } P(B < n)
\]

This does not mean

Bob gets \(s \) with 50% and

\(0 < s < \theta \). Also, the secret

Discussion: Transfer
\[s = \frac{x + \mu}{\sigma} \]

\[
\begin{align*}
\text{If} & \quad x \to -\infty \quad \text{and} \quad \mu \text{ and } \sigma \text{ large, hence } \frac{x + \mu}{\sigma} \to -\infty \quad \text{and } s \to -\infty \\
\text{Also, some lo bag } & \quad x \to \infty \\
\text{And some & } \quad x \to \infty \\
\text{Pick } & \quad a \quad \text{and } \quad b \quad \text{and } \quad n \quad \text{and } \quad y \\
\text{Also, } \quad \text{Pick } & \quad (S) \quad \text{and } \quad (K) \\
\text{Also, Pick } & \quad (x) \quad \text{and } \quad (n) \\
\end{align*}
\]
Also send 2 pools here to 2G6

- Alice will not know
- Bob will get a secret
- Alice has 2 secrets

07, 1 out of 2
Will get a R or X unless R is general

Alice needs E1, E2 to decrypt msg

(First get I msg)

Bob encrypts a msg (E1, 2 E2) - Alice

Bob picks a
Alienate example one secret with R

Bob deciphers book

get secret A

I encrypt with R

detectable if hash included
Normal distribution

$F \left(\frac{\mu - \mu_0}{\sigma} \right) = \Phi \left(\frac{\mu - \mu_0}{\sigma} \right)$

Knowing what she is signing

Make Alice sign something else

Blind Signature
- Bed merges 4 sig & sig 2 sig 4 sig 2 sig
- Placenta blends dec & dec to A
- Bed shades blends dec to A
- Bed blends document
Bob encrypts $E_{\text{pub}}(E_{K}(\text{doc}))$.

Alice signs $E_{\text{pub}}(E_{K}(\text{doc}))$.

Bob decrypts $D_{K}(\text{enc})$.

Alice signs K.

Bob decrypts $E_{\text{pub}}(K)$ by K_{sym} key.
Labeled \leftarrow decode with R & send to beg

$= \left(doc, kern4 \right)$ & $R \leftarrow$ send to beg

$\left\{ \begin{array}{c}
\text{do c. } [R \left(\text{beg e} \right)] \text{ [kern4]}
\end{array} \right.$

$\left\{ \begin{array}{c}
\text{do c. } [R \left(\text{beg e} \right)] \text{ [kern4]}
\end{array} \right.$

send to beg
m = send # of doc as per Trust

rt-document

Alice sends Trust hash of doc -> H

TS using buddy protocol
In the next document (second page),

\[I_{D_{n-1}} = \text{pen} \text{ before } Alice \]

\[I_{D_n} = Alice \]

\[\Sigma g (n, A, H_n, TS_n, ID_n, H_{n-1}, TS_{n-1}, ID_{n-1}, H_n, TS_n) \]

\[L_n \in H (ID_{n-1}, H_{n-1}, TS_{n-1}, (L_n-1)) \]

\[\text{From next } Alice \text{ this much sent by Alice} \]