Prerequisites - CS degree

Web page

Reference - Wikipedia

Textbook - ? Bruce Schneier

Date: 1/9
Cryptography & Security
part of
overlap with other classes
Proof:

Let \(\mathbb{P} \) be the set of prime numbers.

Let \(\mathbb{Z} \) be the set of integers.

Let \(\mathbb{Q} \) be the set of rational numbers.

Let \(\mathbb{R} \) be the set of real numbers.

Number Theory

\[x \in \mathbb{Q} \]
on = no

prime < yes

(1 \times 2 \times 3 \times 5 \times 7 \times \ldots \times \#) + 1

\text{largest prime} \quad \#

\text{Euler - 300 BC}

\text{of prime} \quad \#

\text{of prime} \quad \#
Course coverage

- Intro → Random #s
 - hash functions
 - sym encryption
 - asym